Бактериальные токсины. Их природа и механизмы действия.

Автор: | 06.05.2019

Организация бактериальных токсинов характерна для сигнальных молекул, способных действовать на большом расстоянии от источника без ослабления силы сигнала. Их эволюция происходила путем нарастания сложности молекул, вызванной дупликациями и слияниями генов, кодирующих отдельные домены. Древность происхождения бактериальных токсинов ставит под сомнение не только антропонозный характер многих инфекционных болезней, в развитии которых токсины определяют основные симптомы, но и существующие представления о поддержании в природе их возбудителей. По механизму действия токсины могут быть разделены на 5 групп: повреждающие мембраны, ингибиторы белкового синтеза, активаторы иммунного ответа, протеазы, активаторы вторичных мессенджеров. Общая для всех бактериальных токсинов структура, в которой одна из субъединиц играет роль лиганда, другая вызывает токсический эффект, позволяет вести исследования, направленные на получение нового поколения медицинских иммунобиологических препаратов, не имеющих аналогов в природе. В настоящее время разработаны подходы для вмешательства в структуру молекул токсинов, позволяющие получать иммунотоксины для прицельного терапевтического воздействия на злокачественные клетки крови, и токсины с измененной специфичностью и/или с более высокой токсичностью в отношении отдельных видов насекомых. Максимально возможная токсичность для природных, гибридных и модифицированных токсинов ограничена невозможностью дальнейшего усложнения их молекулярной структуры и не будет превышать токсичности ботулинического токсина.

Токсинами после открытия Эмилем Ру и Александром Иерсиным в 1888 г. дифтерийного токсина традиционно называют белковые вещества, образуемые преимущественно микроорганизмами и некоторыми животными, и обладающие ядовитым действием. Токсины определяют основные симптомы дифтерии, коклюша, холеры, сибирской язвы, ботулизма, столбняка, гемолитического уремического синдром и некоторых других инфекционных болезней человека и животных. К настоящему времени накоплены данные, показывающие возможность выполнения токсинами функций, не имеющих отношения к инфекционным процессам. Среди них: использование бактериями токсинов как средства антагонизма в микробных сообществах (холерный токсин оказывает ингибирующее действие на ряд бактерий); участие токсинов в авторегуляторных процессах в бактериальных популяциях (энтеротоксин C. perfringens) и др. [5].

Достижения генной и белковой инженерии открыли ученым возможности по конструированию новых медицинских иммунобиологических препаратов (МИБП) на основе производных бактериальных токсинов, не имеющих аналогов в природе. Целью работы является обобщение данных по природе, механизмам действия и возможностям конструирования гибридных и модифицированных токсинов бактерий.

Организация молекул бактериальных токсинов

Токсины бактерий представляют собой либо отдельные белки, либо олигомерные белковые комплексы, организованные в А–В-структуры. Такая структура молекулы токсина предполагает наличие двух компонентов: А- и В-субъединиц, поэтому их еще называют бинарными. А-субъединица обладает энзиматической (токсической) активностью в клетке. В-субъединица доставляет А-субъединицу в клетку-мишень. В-субъединица состоит из двух функциональных доменов: рецептор-связывающего домена, определяющего тропизм молекулы токсина к определенным клеткам; и транслокационного домена, доставляющего А-субъединицу через липидный бислой, либо на плазматическую мембрану или в эндосому клетки-мишени. Структура В-доменов тесно связана со структурой рецепторов-мишеней, с которыми взаимодействует токсин. А-субъединицы более консервативны, чем В-субъединицы, особенно в участках, критических для проявления их ферментативной активности.

Кроме взаимодействия с рецептором клетки-мишени, по мнению Ю.В. Вертиева [3], В-субъединица имеет еще одну важную функцию — предохранителя, предотвращающего «случайный выстрел». Она экранирует ферментативную субъединицу, исключая случайное ее взаимодействие с субстратом в собственной клетке и за пределами клетки-мишени. Активация токсической субъединицы происходит после протеолитического расщепление В-субъединицы (В-прекурсора), наступающего после ее взаимодействия с клеткой-мишенью (рис. 2).

Частным случаем А-В-структур являются трехкомпонентные токсины со структурой типа A1-B-A2, где В — субъединица, участвующая в связывании токсина с рецептором; А1 и А2 — субъединицы, проявляющие различную энзиматическую (токсическую) активность в клетке хозяина. Трехкомпонентные токсины используют общую В-субъединицу, обеспечивающую ферментативным субъединицам единый механизм проникновения в цитозоль. Такая организация молекулы необходима для проявления синергидного эффекта токсического действия ферментативных субъединиц [5]. Наиболее изученным токсином данного типа является сибиреязвенный.

Наличие А- и В-субъединиц (доменов) в структурах молекул подавляющего большинства белковых токсинов бактерий свидетельствует о том, что они, как правило, являются крупными функциональными белковыми агрегатами. Эволюционно образование таких агрегатов стало возможным путем объединения двух или более белков в результате как нековалентных взаимодействий (сибиреязвенный, коклюшный и другие токсины), так и путем образования ковалентной связи между ними (ботулинический и столбнячный токсины). В свою очередь отдельные субъединицы токсинов так же состоят из некогда различных белков, объединенных в пептид, проявляющий несколько активностей сразу. Например, тяжелые цепи ботулинического и столбнячного токсинов содержат два домена — регион, необходимый для транслокации токсина; и регион, необходимый для связывания с клеткой. Белки такого типа образуются слиянием соответствующих генов в один ген, кодирующий большую полипептидную цепь. Для бактериальных токсинов характерно сходство их субъединиц на молекулярном и макромолекулярном уровнях. Оказалось, что хотя холерный токсин и относящийся к его семейству температуролабильный энтеротоксин кишечной палочки (LT-токсин) имеют по пять идентичных В-субъединиц, а коклюшный токсин имеет четыре различных В-субъединицы, но две из В-субъединиц коклюшного токсина свертываются аналогично В-субъединичным пентамерам семейств холерного токсина и шига-токсина.

Сходство обнаружено как между ферментативными субъединицами токсинов бактерий, так и ферментами эукариотов. По крайней мере пять АДФ-рибозилирующих токсинов (коклюшный, холерный и дифтерийный токсины, LT-токсин кишечной палочки и экзотоксин А псевдомонад) имеют общий НАД-связывающий сайт [18]. Участок протяженностью в 100 аминокислот ферментативного домена CNF1 (цитотоксический некротизирующий фактор первого типа), гомологичен участку ферментативного домена дермонекротического токсина бордетелл. Оба одинаковых участка выполняют одинаковую функцию — активируют Rho (субсемейство маленьких ГТФ-связывающих белков, участвующих в модификации регуляторов актина цитоскелета) и являются активными сайтами токсинов [24]. Отечный фактор сибиреязвенного микроба представляет собой аденилатциклазу, которая не только по кинетическим, но и по антигенным свойствам имеет сходство с действующей на ту же мишень кальмодулинзависимой аденилатциклазой эукариотических клеток [23, 32]. Сходство между А- и В-субъединицами токсинов различных бактерий, между ними и различными белками вирусов или эукариотических организмов, выполняющих сходную функцию, скорее является проявлением конвергентной гомологии молекул, подвергавшихся однонаправленному действию естественного отбора, чем свидетельством их общего происхождения [5].

Ю.В. Вертиев [3] обратил внимание ученых на то, что бактериальные токсины, интерфероны, бактериоцины и гормоны обнаруживают сходство в отношении целого ряда важных свойств: 1) синтезируются одним типом клеток, в то время как воздействуют на другие типы клеток; 2) действуют на клетки в чрезвычайно низкой концентрации (10-11–10-14 М); 3) обладают сходной молекулярной организацией: т.е. состоят как минимум из двух функционально и структурно различных белков (доменов) — энзиматического и рецепторного; 4) имеют сходные звенья молекулярного механизма действия (связывание с рецепторами, активация, транслокация внутрь клетки и модификация клеточных мишеней); 5) обнаруживают сходную кинетику биологического эффекта — одноударный эффект; 6) все эти вещества токсичны.

Двухкомпонентный состав и одноударность действия бактериальных токсинов можно объяснить, сделав предположение, что способность синтезировать токсины позволяла бактерии реализовывать какую-то сигнальную функцию1 в их экосистемах, сформировавшихся еще до появления сложных многоклеточных организмов с дифференцированными тканями (высшие растения, хордовые). Преимущество такой структуры для передачи сигналов в том, что при ее распространении из центра, сигнал не ослабляется на большом расстоянии. Если бы передача сигнала осуществлялась структурами, не способными к лиганд-специфическому взаимодействию, то сигнал ослабевал бы по мере диффузии сигнальных молекул. Отсюда, как следствие, способность воздействовать на другие типы клеток в чрезвычайно низких концентрациях и бактериальные токсины механизмы действия.